About the strong solvability of mixed problems for first order equations with deviating argument

Amir Shaldanbaev^a, Salima Shalenova^b ^{a,b} M. Auezov South Kazakhstan State University, Kazakhstan, ^ashaldanbaev51@mail.ru, ^bsalima_shalenova@mail.ru

Abstract: In this paper, we have obtained the criteria for strong solvability of a mixed problem for functional differential equations, by methods of spectral theory of operators.

Statement of the problem.

Let $\Omega \subset R^2$ is a quadrangle bounded by segments: $AB: 0 \le y \le 1$, x = 0; $BC: 0 \le x \le 1$, y = 1; $CD: 0 \le y \le 1$, x = 1; $DA: 0 \le x \le 1$, y = 0.

The set of functions u(x,t) denoted by $C^{1,1}(\Omega)$, which are continuously differentiable in Ω , by variables x and t. The set of segments explains the boundary of domain Ω [1].

Mixed problem. Finding the solution of equation

$$Lu = iu_{x}(x, y) + u_{y}(x, 1 - y) = f(x, y),$$
(1)

which satisfies the boundary conditions

$$u\Big|_{y=0} = 0,$$
 (2)

$$u|_{x=0} = \alpha u|_{x=1}, \quad |\alpha| = 1,$$
 (3)

where $f(x, y) \in L^2(\Omega)$.

The idea of the work is very simple. Investigation task corresponds to some linear operator in Hilbert space [2]. Strong solvability of the examined regional task is investigation of a limit convertibility of this operator.

Keywords: continuous spectrum, self-conjugate operator, orthonormal base. **References:**

[1] S. Mizohata. The Theory of Partial Differential Equations, Mir, Moscow, 1977.

[2] A.Kolmogorov, S.Fomin. Elements of the theory of functions and functional analysis, Nauka, Moscow, 1968.