On the controllability of the multidimensional phase system

Maksat Ahmetzhanov^a, Muvasharkhan Jenaliyev^b ^{a,b}The Institute of Information and Computational Technologies, Kazakhstan ^amaks714@mail.ru, ^bmuvasharkhan@gmail.com

Abstract: We will study the issues of controllability multidimensional phase system. The problem is reduced to a system of nonlinear differential equations, for which we develop a method proposed in [1]. Consider the following model of the phase system, "synchronous generator- steam turbine," described by differential equations of the form

$$\begin{cases} \frac{d\delta}{dt} = S, \\ T_{j}\frac{dS}{dt} = P_{T} - KS - \left[\frac{E^{2}}{z_{11}}\sin\alpha_{11} + \frac{EU}{z_{12}}\sin(\delta - \alpha_{12})\right], \\ T_{P}\frac{dP_{T}}{dt} = -P_{T} + \rho_{o}P_{0} - \frac{P_{0}}{\sigma_{0}}S + u, \end{cases}$$
(1)

where P_T -power steam turbine; T_P -time constant cycle regulation of the steam turbine; ρ_o , P_0 -defined constants (ρ_o -start opening the windows spool, P_0 -rated power turbines); σ_0 -statism Archway (automatic speed control); u - control effects MUT (turbine control mechanism); δ - angle EMF generator; S-slip generator; T_j - constant inertia of the rotating masses; K> 0 - damping coefficient; E-EMF generator design; U-busbar voltage infinite capacity z_{11} -inherent resistance of the generator; z_{12} -mutual impedance between the generator and tires; α_{11} -additional angle own resistance; α_{12} -additional angle relative resistance.

For the system of regulation of the steam turbine, we give the following parameters: $\rho_o = 0.994$, $T_P = 251.2$, $P_0 = 10420$, $\sigma_0 = 0.06$.

Keywords: electric power system, nonlinear system, phase system, controllability, synchronous generator.

References:

[1] S.A. Aysagaliyev, Theory of phase systems Kazakh University, Almaty, 2005.