Coercive estimates for solutions of one singular equation with the thirdorder partial derivative

Myrzagali N. Ospanov ${ }^{a}$
${ }^{a}$ L.N. Gumilyov Eurasian National University, Kazakhstan
${ }^{a}$ myrzan66@mail.ru

Abstract

Sufficient conditions of boundedness for the highest derivative of partial differential equations of the third order are established and coercive estimate in the norm of the space $C_{*}(\bar{\Omega}, R)$ is obtained. Let $\bar{\Omega}=[0, \omega] \times(-\infty,+\infty)$. We consider the equation $u_{x t t}=a_{0}(x, t) u_{x t}+a_{1}(x, t) u_{x}+a_{2}(x, t) u_{t}+a_{3}(x, t) u+f(x, t)$,

where the functions $a_{i}(x, t)(i=\overline{0,3}), f(x, t)$ are continuous and, generally speaking, are unbounded on $\bar{\Omega}$.

We denote by $C_{*}(\bar{\Omega}, R)$ the space of bounded functions, which continuous with $t \in R$ at $x \in[0, \omega]$ and uniformly with respect $t \in R$ continuous for $x \in[0, \omega]$.
Let $\|V(x,)\|_{1}=\sup _{t \in R}\|V(x, t)\|$, where $\|V(x, t)\|=\max _{i=1, n}\left|V_{i}(x, t)\right|$. We investigate the properties for solutions $u(x, t)$ of equation (1) satisfying the conditions

$$
\begin{equation*}
u(0, t)=\psi(t), u(x, t), u_{x}(x, t), u_{t}(x, t), u_{x t}(x, t) \in C_{*}(\bar{\Omega}, R) . \tag{2}
\end{equation*}
$$

Assume that $P_{\alpha, \beta}(x, t)=\frac{\alpha(x, t)}{\sqrt{\beta(x, t)}}, \theta(x, t)=\frac{1}{d} \int_{t}^{t+d} a_{1}(x, \tau) d \tau$.
Theorem 1. Let the functions $a_{i}(x, t)(i=\overline{0,3})$ of equation (1) be continuous on $\bar{\Omega}$ and $\psi, \psi^{*}, \psi^{* *}$ be continuous and bounded on R and the following conditions are satisfied:
a) $a_{1}(x, t) \geq \gamma>0, \gamma$-const., $\frac{a_{1}(x, t)}{a_{1}(x, \bar{t})} \leq c$ at $t, \bar{t} \in R:|t-\bar{t}|<d, c, d$ - const.;
b) for every $\varepsilon>0$ there exists a number $\delta>0$ such that for all t from R and $x^{\prime}, x^{\prime \prime} \in[0, \omega]:\left|x^{\prime}-x^{\prime \prime}\right|<\delta$ the inequality $\left|\frac{a_{1}\left(x^{\prime}, t\right)-a_{1}\left(x^{\prime \prime}, t\right)}{a_{1}\left(x^{\prime \prime}, t\right)}\right|<\varepsilon$ holds;

$$
\begin{aligned}
& P_{a_{0}, a_{1}}(x, t) \leq K, P_{a_{2}, a_{1}}(x, t), P_{a_{3}, a_{1}}(x, t), P_{f, a_{1}}(x, t), \\
& f(x, t), \sqrt{\theta(x, t)} \psi(t), \sqrt{\theta(x, t)} \psi^{*}(t) \in C_{*}(\bar{\Omega}, R)
\end{aligned} .
$$

Then, there exists a unique solution $u(x, t)$ of problem (1), (2), moreover $u_{x t t} \in C_{*}(\bar{\Omega}, R)$ and the following estimate
$\left\|u_{x t}\right\|_{1}+\left\|a_{0} u_{x t}\right\|_{1}+\left\|a_{1} u_{x}\right\|_{1}+\left\|a_{2} u_{t}\right\|_{1}+\left\|a_{3} u\right\|_{1} \leq C$.
holds. Here, C depends on norms of the functions f, ψ, and constants $\gamma, K, c, d, \varepsilon$.

References:

[1] D.S. Djumabayev, M. N. Ospanov, Mathematical Journal, vol. 6, no.1(19), pp. 61-66, 2006.

