On estimates of \mathbf{M}-term approximations of classes in a symmetric space

Saulebek Mahashev ${ }^{a}$, Gabdolla Akishev ${ }^{b}$
${ }^{a, b}$ Nazarbayev Intellectual Schools Karaganda, Kazakhstan amahashev@mail.ru, ${ }^{\text {b }}$ akishev@ksu.kz

Abstract: Symmetric space of periodic functions of many variables and Nikol'ski-Besov class in this space are considered. Inequalities of different metrics for trigonometric polynomials are proved. The exact order of the best M -term approximation of Nikol`ski-Besov class in symmetric space is obtained.
Let $I^{m}=\left\{\bar{x}\left(x_{1}, \ldots, x_{m}\right) \in R^{m} ; 0 \leq x_{j} \leq 1 ; j=1, \ldots, m\right\}, \quad X(\varphi)$-separable, symmetric space of Lebesgue with fundamental function φ defined in $I^{m} .\|f\|_{X}$ is the norm of element $f \in X(\varphi)[1]$. For function $\varphi(t), t \in[0,1]$, suppose that

$$
\alpha_{\varphi}=\underline{\lim _{t \rightarrow 0}} \frac{\varphi(2 t)}{\varphi(t)}, \quad \beta_{\varphi}=\overline{\lim _{t \rightarrow 0}} \frac{\varphi(2 t)}{\varphi(t)} .
$$

Let $1<\alpha_{\varphi} \leq \beta_{\varphi}<2, \quad 1 \leq \theta \leq \infty$ and $r>0$. In the symmetric space Nikol'ski-Besov class $B_{X, \theta}^{r}$ is considered. The quantity $e_{M}(f)_{X}$ is the best $\mathrm{M}-$ term approximation of a function $f \in \mathrm{X}(\varphi)$ [2]. For a given class $F \subset X(\varphi)$ let $e_{M}(F)_{X}=\sup _{f \in F} e_{M}(f)_{X}$. So, the following statement is true.
Theorem 1. Let $X(\varphi)$ - symmetric space and
$0<\frac{1}{q}<\frac{1}{2} \leq \log _{2} \alpha_{\varphi} \leq \log _{2} \beta_{\varphi}<1, \quad 1<\tau<\infty, \quad 1 \leq \theta \leq \infty$. If $\frac{1}{2} \leq \frac{1}{q}<\log _{2} \alpha_{\varphi} \leq \log _{2} \beta_{\varphi}<1 \quad$ and $\log _{2} \beta_{\varphi}-\frac{1}{q}<\frac{r}{m}$, then

$$
e_{M}\left(B_{X, \theta}^{r}\right)_{L_{q, \tau}} \breve{u} \frac{M^{-\left(\frac{r}{m}+\frac{1}{q}\right)}}{\varphi\left(M^{-1}\right)} .
$$

If $0<\frac{1}{q}<\log _{2} \alpha_{\varphi} \leq \log _{2} \beta_{\varphi} \leq \frac{1}{2} \quad$ and $\frac{r}{m}>\frac{1}{2}$, then $e_{M}\left(B_{X, \theta}^{r}\right)_{L_{q, \tau}} \breve{n} M^{-\frac{r}{m}}$.

References:

[1] S.G. Krein, Y.I. Petunin, E.M. Semenov, Interpolations of linear operators, Nauka, Moscow, 1977.
[2] R.A. De Vore, V.N. Temlyakov, Nonlinear approximation by trigonometric sums, Journal Fourier Analysis and applications, vol. 2, no. 1, pp. 29-48, 1995.

