On the solvability of the problem of the optimal boundary control of thermal processes described by the Fredholm integro-differential equations

AkylbekKerimbekov^a, Aisha Kadirimbetova^b

a,b</sup>Department of Applied Mathematics and Informatics, Kyrgyz-Russian Slavic

University, Kyrgyzstan

akl7@rambler.ru, bnametkulova65@mail.ru

Abstract: We study the problem of tracking, where it is required to minimize the functional

$$J[u(t)] = \int_0^T \int_Q \left[V(t,x) - \xi(t,x) \right]^2 dx dt + \beta \int_0^T u^2(t) dt, \quad \beta > 0,$$
 on the set of solutions of the following boundary value problem
$$V_t - AV = \lambda \int_0^T K(t,\tau) V(\tau,x) d\tau + g[t,x], \quad x \in Q \subset \mathbb{R}^n, \quad 0 < t \le T,$$

$$V(0,x) = \psi(x), \quad x \in Q,$$

$$\Gamma V(t,x) \equiv \sum_{i,j=1}^n a_{ij}(x) V_{x_j}(t,x) \cos(\delta,x_i) + a(x) V(t,x) = b[t,x] p[t,u(t)],$$

$$x \in \gamma, \quad 0 < t \le T.$$

Here, γ is a piecewise smooth boundary of the region Q, δ is a normal, which is conducted at the point $x \in \gamma$, A is an elliptic operator; $g[t,x] \in H(Q_T)$, $Q_t = Q \times (0,T)$, $b[t,x] \in H(\gamma \times (0,T))$, $p[t,u(t)] \in H(0,T)$, $\psi(x) \in H(Q)$ are given functions, $u(t) \in H(0,T)$ is control function, $K(t,\tau)$, a(x), $a_{ij}(x)$ are known functions; T is a fixed moment of time; λ is a parameter.

Keywords: integro - differential equation, boundary control, the optimality condition.

References:

- [1] A.B. Vasileva, A.N. Tikhonov, Integral equations, Publishing house Moscow State University, Moscow, 1989.
- [2] A.K. Kerimbekov, On solvability of the nonlinear optimal control problem for prosesses described by the semi-linear parabolic equations, Proceedings World Congress on Engineering, vol. 1, pp. 270–275, 2011.