On the solvability of the problem of the optimal control of thermal processes described by the Volterra integro-differential equations

Akylbek Kerimbekov^a, Bahytjamal Kulbaeva^b ^{a,b}Department of Applied Mathematics and Informatics, Kyrgyz-Russian Slavic University, Kyrgyzstan ^a<u>akl7@rambler.ru</u>, ^b<u>kulbaeva@mail.ru</u>

Abstract: In this paper, we study the problem of tracking, where it is required to minimize the functional

 $J[u(t)] = \int_0^T \int_Q \left[V(t,x) - \xi(t,x) \right]^2 dx dt + \beta \int_0^T |u(t)| dt, \quad \beta > 0,$ on the set of solutions of the following boundary value problem $V_t - AV = \lambda \int_0^t K(t,\tau) V(\tau,x) d\tau + g[t,x] f[t,u(t)], \quad x \in Q \subset \mathbb{R}^n, \quad 0 < t \le T,$ $V(0,x) = \psi(x), \quad x \in Q,$ $\Gamma V(t,x) \equiv \sum_{i,j=1}^n a_{ij}(x) V_{x_j}(t,x) \cos(\delta, x_i) + a(x) V(t,x) = 0,$ $x \in \gamma, \quad 0 < t \le T.$ Here, x is a piecewise smooth boundary of the radio 0, δ is a normal, which

Here, γ is a piecewise smooth boundary of the region Q, δ is a normal, which is conducted at the point $x \in \gamma$, A is an elliptic operator; $g[t,x] \in H(Q_T)$, $Q_t = Q \times (0,T)$, $f[t,u(t)] \in H(0,T)$, $\psi(x) \in H(Q)$ are given functions, $u(t) \in H(0,T)$ is control function, $K(t,\tau)$, a(x), $a_{ij}(x)$ are known functions; T is a fixed moment of time; λ is a parameter.

Keywords: piecewise linear functional, Volterra integro – differential equation, optimal control.

References:

[1] A.K. Kerimbekov, On solvability of the nonlinear optimal control problem for prosesses described by the semi-linear parabolic equations,_Proceedings World Congress on Engineering, vol. 1, pp. 270–275, 2011.

[2] A.I. Egorov, Optimal control of thermal and diffusion processes, Nauka, Moscow, 1978.