On the solvability of the problem of the distributed optimal control of oscillation processes described by the Fredholm integro-differential equations

Akylbek Kerimbekov^a, Elmira Abdyldaeva^b ^aDepartment of Applied Mathematics and Informatics, Kyrgyz-Russian Slavic University, Kyrgyzstan ^bDepartment of Mathematics, Kyrgyz Turkish University Manas, Kyrgyzstan

^aakl7@rambler.ru, ^befa69@mail.ru

Abstract: In this paper the problem of tracking were studying, where it is required to minimize the functional

 $J[u(t)] = \int_0^T \int_Q \left[V(t,x) - \xi(t,x) \right]^2 dx dt + \beta \int_0^T \int_Q p^2 [t,x,u(t,x)] dx dt,$ $\beta > 0,$

on the set of solutions of the following boundary value problem

$$\begin{split} V_{tt} - AV &= \lambda \int_0^T K(t,\tau) V(\tau,x) \, d\tau + f[t,x,u(t,x)], \ x \in Q \subset R^n, \ 0 < t \le T, \\ V(0,x) &= \psi(x), \ x \in Q, \\ \Gamma V(t,x) &\equiv \sum_{i,j=1}^n a_{ij}(x) V_{x_j}(t,x) cos(\delta,x_i) + a(x) V(t,x) = 0, \\ x \in \gamma, \ 0 < t \le T. \end{split}$$

Here, γ is a piecewise smooth boundary of the region Q, δ is a normal, which is conducted at the point $x \in \gamma$, A is an elliptic operator; $f[t, x, u(t, x)] \in$ $H(Q_T), Q_T = Q \times (0,T), \psi(x) \in H(Q)$ are given functions, $u(t,x) \in$ $H(Q_T)$ is distributed control, $K(t,\tau)$, a(x), $a_{ii}(x)$ are known functions; T is a fixed moment of time; λ is a parameter. It is established that the optimal control $u = u^{0}(t)$ is defined as the solution of a nonlinear integral equation with discontinuous kernel and satisfies the additional conditions in the form of inequality. obtained the form Solution is in of a triplet $(u^{0}(t), V^{0}(t,x), I[u^{0}(t)])$, where $u^{0}(t)$ is the optimal control, $V^{0}(t,x)$ is the optimal process, $J[u^0(t)]$ is the minimal value of the functional.

Keywords: functional, Fredholm integro – differential equation, the optimality condition, nonlinear integral equation, optimal control.

References:

[1] V.S. Vladimirov, Mathematical problems of single speed theory of particle transport, Works of MIAN, vol. 61, no. 4, pp. 3–158, 1961.

[2] A.K. Kerimbekov, On solvability of the nonlinear optimal control problem for prosesses described by the semi-linear parabolic equations,_Proceedings World Congress on Engineering, vol. 1, pp. 270–275, 2011.