Differentiable solutions of the second order elliptic equation

Mukhtarbay Otelbaev^a, Kordan N. Ospanov^b ^{a,b}Faculty of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, Kazakhstan ^a<u>otelbaevm@mail.ru</u>, ^b<u>ospanov_kn@enu.kz</u>

Abstract: Let $n \ge 3$ and Q be a bounded set in \mathbb{R}^n with a smooth boundary and Ω be an arbitrary open subset of Q. We study the second order elliptic equation with discontinuous intermediate coefficients:

$$-\Delta u + \sum_{k=1}^{n} a_{k}(x)u = f , \qquad (1)$$

where $x = (x_1, x_2, ..., x_n) \in \Omega$.

It is known that if p > n and $a_k, f \in L_p(\Omega)$, k = 1, 2, ..., n, then there is a generalized solution $u \in W_p^1(\Omega)$ of equation (1) such that it has continuous first order partial derivatives in Ω (see [1], Ch. 3). This result can not be improved. Since if at least one of a_k (k = 1, 2, ..., n) and f belongs to $L_n(\Omega) \setminus L_p(\Omega)$, p > n, then the solution u of equation (1) does not belong to $C_{loc}^{(1)}(\Omega)$. So the following question arises:

Question: Are there other spaces such that the above precise result about differentiable solutions of equation (1) holds for any a_k (k = 1, 2, ..., n) and f in this spaces?

The purpose of this work is to answer this question.

Suppose that the variable coefficients a_k (k = 1, 2, ..., n) and the right-hand side f of equation (1) belong to some space M. We find the necessary and sufficient conditions on M for continuous differentiability of the solution to equation (1), when M is a space of type F or a symmetric space, or one of a Sobolev and Besov space.

Keywords: elliptic equation, intermediate coefficient, Lorentz space. **References:**

[1] O. A. Ladyzhenskaya, and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic, New York, 1968.

[2] J. Berg, and J. Lofstrom, Interpolation Spaces, an Introduction, Springer-Verlag, Berlin-Heidelberg-New York, 1976.

[3] K. N. Ospanov, and M. Otelbaev, Soviet Math. Dokl. 32, pp. 40-42, 1985.

[4] K. N. Ospanov, Izv. Akad. Nauk Kazakh SSR. Ser. Fiz.-Mat., 1, pp. 60-62, 1982.

[5] M. Otelbaev, Amer. Math. Soc. Trans. 122, pp. 105-117, 1984.