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Abstract: Let 3n  and Q  be a bounded set in nR  with a smooth boundary and 

  be an arbitrary open subset of Q . We study the second order elliptic equation 

with discontinuous intermediate coefficients: 
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where  )...,,,( 21 nxxxx . 

It is known that if np   and )(,  pk Lfa , nk ...,,2,1 , then there is a 

generalized solution )(1  pWu  of equation (1) such that it has continuous first 

order partial derivatives in   (see [1], Ch. 3). This result can not be improved. 

Since if at least one of ka  ( nk ...,,2,1 ) and f  belongs to )(\)(  pn LL , np  , 

then the solution u  of equation (1) does not belong to )()1( locC . So the following 

question arises: 

Question: Are there other spaces such that the above precise result about 

differentiable solutions of equation (1) holds for any ka  ( nk ...,,2,1 ) and f  in 

this spaces? 

The purpose of this work is to answer this question. 

Suppose that the variable coefficients ka  ( nk ...,,2,1 ) and the right-hand 

side f  of equation (1) belong to some space M . We find the necessary and 

sufficient conditions on M  for continuous differentiability of the solution to 

equation (1), when M  is a space of type F  or a symmetric space, or one of a 

Sobolev and Besov space.  
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