A criterion for the strong solvability of the Neumann-Tricomi problem for the Lavrent'ev-Bitsadze equation in L_p

Makhmud Sadybekov^a, Nurgissa Yessirkegenov^b ^{a,b}Institute Mathematics and Mathematical Modelling, Kazakhstan ^bAl-Farabi Kazakh National University, Kazakhstan ^amakhmud-s@mail.ru, ^bnurgisa@hotmail.com

Abstract: In this study, we consider the Neumann-Tricomi problem of finding u(x, y) for the Lavrent'ev-Bitsadze equation with the following boundary value conditions

$$\begin{cases} Lu \equiv -sgnyu_{xx} - u_{yy} = f(x, y), (x, y) \in \Omega, \\ \frac{\partial u}{\partial n}\Big|_{\sigma} = 0, \\ u\Big|_{AC} = 0. \end{cases}$$
(1)

Here, $\Omega \subset \mathbb{R}^2$ is a finite domain bounded by a curve σ for y > 0 and by the characteristics AC: x + y = 0 and BC: x - y = 1 for y < 0, and the symbol $\frac{\partial}{\partial n}$ is the directional derivative in the outward normal to the σ .

The existence and uniqueness of regular solution of Neumann-Tricomi problem (1) was proved by Bitsadze [1]. The completeness of eigenfunctions of the Neumann-Tricomi problem for a degenerate equation of mixed type in the elliptic part of the domain was investigated by Moiseev and Mogimi [2].

Theorem 1. The Neumann-Tricomi problem (1) is strongly solvable for any right-hand side $f \in L_p(\Omega)$ if and only if

$$\alpha \leq \frac{\pi}{8} \frac{p}{p-1}, \beta \leq \frac{3\pi}{4} \frac{p}{p-1}.$$

Corollary 2. The Neumann-Tricomi problem in the classical domain, when the elliptic part of the domain coincides with the semi-circle, is not strongly solvable in $L_2(\Omega)$.

Keywords: Neumann-Tricomi problem, Lavrent'ev-Bitsadze equation, strong solution.

References:

[1] A.V. Bitsadze, To the problem of mixed type equations, Trudy MI AN SSSR, vol. 41, pp. 3–59, 1953.

[2] E.I. Moiseev, M. Mogimi, On the completeness of eigenfunctions of the Neumann-Tricomi problem for a degenerate equation of mixed type, Differential Equations, vol. 41, no 12, pp. 1789–1791, 2005.