The deficiency indices of singular differential operators in vector-valued functions space

Yaudat Sultanaev ${ }^{a}$, Gulnar Berdenova ${ }^{b}$
${ }^{a}$ M. Akmullah Bashkir State Pedagogical University, Kazakhstan
${ }^{b}$ L.N. Gumilyov Eurasian National University, Kazakhstan
asultanaevyt@gmail.com, ${ }^{b}$ gulnar_7109@mail.ru

Abstract: In this work, we consider the minimal differential operator L_{0} in the space $H=L^{2}(0, \infty) \oplus L^{2}(0, \infty)$ which is generated by the following differential expression:

$$
\begin{equation*}
L_{0}(y)=y^{(4)}+Q(x) y . \tag{1}
\end{equation*}
$$

Here $y(x)=\left(y_{l}(x), y_{2}(x)\right), 0<x<\infty$ and $Q(x)=\left\|q_{i j}\right\|^{2}{ }_{i, j=1}-$ is a real symmetric matrix, whose eigenvalues $\mu_{1}(x) \rightarrow+\infty, \mu_{2}(x) \rightarrow-\infty$, for $x \rightarrow \infty$.
Introduce $\varphi(x)=\frac{1}{2} \operatorname{arctg} \frac{q_{22}-q_{11}}{2 q_{12}}$. The function $\varphi(x)$ is called as the speed of the rotation of eigenvectors of the matrix $Q(x)$.
Theorem 1. Assume that for sufficiently large x_{0} and $\mathrm{x}>\mathrm{x}_{0}$ the following inequalities

1) $\left|\varphi^{\prime}(x)\right|<$ const ,
2) $0<\mathrm{A} \leq\left|\frac{\mu_{\mathrm{i}}(x)}{\mu_{j}(x)}\right| \leq B, i, j=1,2$,
3) $\int_{x_{0}}^{\infty}\left|\mu_{i}^{-\frac{1}{4}}(x)\right| d x<\infty, \int_{x_{0}}^{\infty}\left|\frac{\mu_{i}^{\prime 2}(x)}{\mu_{i}^{\frac{9}{4}}(x)}+\frac{\mu_{i}^{\prime \prime}(x)}{\mu_{i}^{\frac{5}{4}}(x)}\right| d x<\infty, \int_{x_{0}}^{\infty}\left|\frac{\varphi^{\prime \prime}(x)}{\mu_{i}^{\frac{1}{4}}(x)}\right| d x<\infty, i=1,2$
4) $\left|\mu_{i}^{\prime}(x)\right| \leq C\left|\mu_{i}(x)\right|^{\alpha}, C=$ const, $i=1,2, \quad 0<\alpha<\frac{5}{4}$

Are satisfied. Then, system (1) has eight linearly independent solutions $y_{j}(x, \lambda)$ for $x \rightarrow \infty$, such that

$$
\begin{aligned}
& y_{1}=\varphi_{1}(x, \lambda) \exp \left\{\int_{0}^{x}\left(\lambda-\mu_{1}(t)\right)^{1 / 4} d t\right\}(1+o(1)), y_{2}=\varphi_{1}(x, \lambda) \exp \left\{-\int_{0}^{x}\left(\lambda-\mu_{1}(t)\right)^{1 / 4} d t\right\}(1+o(1)), \\
& y_{3}=\varphi_{1}(x, \lambda) \exp \left\{i \int_{0}^{x}\left(\lambda-\mu_{1}(t)\right)^{1 / 4} d t\right\}(1+o(1)), y_{4}=\varphi_{1}(x, \lambda) \exp \left\{-i \int_{0}^{x}\left(\lambda-\mu_{1}(t)\right)^{1 / 4} d t\right\}(1+o(1)), \\
& y_{5}=\varphi_{2}(x, \lambda) \exp \left\{\int_{0}^{x}\left(\lambda-\mu_{2}(t)\right)^{1 / 4} d t\right\}(1+o(1)), y_{6}=\varphi_{2}(x, \lambda) \exp \left\{-\int_{0}^{x}\left(\lambda-\mu_{2}(t)\right)^{1 / 4} d t\right\}(1+o(1)), \\
& y_{7}=\varphi_{2}(x, \lambda) \exp \left\{i \int_{0}^{x}\left(\lambda-\mu_{2}(t)\right)^{1 / 4} d t\right\}(1+o(1)), y_{8}=\varphi_{2}(x, \lambda) \exp \left\{-i \int_{0}^{x}\left(\lambda-\mu_{2}(t)\right)^{1 / 4} d t\right\}(1+o(1)),
\end{aligned}
$$

where

$$
\varphi_{1}(x, \lambda)=\frac{1}{\sqrt[8]{\left(\lambda-\mu_{1}(x)\right)^{3}}}\binom{\cos \varphi(x)}{-\sin \varphi(x)}, \varphi_{2}(x, \lambda)=\frac{1}{\sqrt[8]{\left(\lambda-\mu_{2}(x)\right)^{3}}}\binom{\sin \varphi(x)}{\cos \varphi(x)} .
$$

Theorem 2. Assume that conditions of Theorem 1 are satisfied. Then, the deficiency indices of operator L_{0} are equal to $(6,6)$.
Keywords: differential operator, distribution of eigenvalues, indices of deficiency, asymptotic of the spectrum

References:

[1] M.A. Naimark, Linear differential operators, Nauka, Moscow, 1969.

