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Abstract:  For fulfillment of three weighted Hardy’s integral inequalities, the 

necessary and sufficient conditions on the weighted functions are received. 

We consider the following inequality  
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where 0f , and the functions )(),(),(  vu   are non-negative and continuous 

on  babaJ ),,( , which are called as weighted. Let G  be integral 

operator 
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We denote by ),,,( KvJRR pp   a space of measurable functions 0f  

on J , for which the functional  
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is finite, where 
p

  is norm of the space  pLp 1, . 

From (3) and (4) it follows that 
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Introduce the following relations: we said that DB   is true, if a 

constant 0c  exists which may depend on p , and inequality  cDB   is valid. 

The relation DB 

    means that BDB  . 
Theorem 1. Let   p1  and G   be the operator of type (2) with non-negative  

kernel ),( xsG ,  and for it condition (3) is satisfied.  Then, inequality (1) is valid 

if and only if B . Here CA 

 , where C  is the least constant in (1). 
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