# On a Hardy's inequality 

Sherali Bilal ${ }^{a}$<br>${ }^{a}$ Institute of Mathematics and Mathematical Modeling, Kazakhstan<br>${ }^{a}$ bilal44@mail.ru


#### Abstract

For fulfillment of three weighted Hardy's integral inequalities, the necessary and sufficient conditions on the weighted functions are received.

We consider the following inequality


$\sup _{x<b}\left(u(x) \int_{x}^{b} f(s) d s\right) \leq C\left\{\left(\int_{J}|\rho f|^{p} d s\right)^{1 / p}+\left(\int_{J} v^{p}(x)\left(\int_{x}^{b} G(s, x) f(s) d s\right)^{p} d x\right)^{1 / p}\right\}$,
where $f \geq 0$, and the functions $u(\cdot), \rho(\cdot), v(\cdot)$ are non-negative and continuous on $J=(a, b),-\infty \leq a<b \leq \infty$, which are called as weighted. Let $G$ be integral operator

$$
\begin{equation*}
G f(x)=\int_{x}^{b} G(s, x) f(s) d s \tag{2}
\end{equation*}
$$

with
$G(s, x) \geq 0$ and $G(s, x) \leq G(t, x)$ under $s \leq t$.
We denote by $R_{p}=R_{p}(J, \rho, \nu, K)$ a space of measurable functions $f \geq 0$ on $J$, for which the functional
$\|f\|_{R_{p}} \equiv\|\rho f\|_{p}+\|v G f\|_{p}$
is finite, where $\|\cdot\|_{p}$ is norm of the space $L_{p}, 1<p<\infty$.
From (3) and (4) it follows that
$\rho^{-1}(\cdot) \equiv \frac{1}{\rho(\cdot)} \in L_{p^{\prime}}^{\text {loc }}, v(\cdot) \in L_{p}(a, t), v(\cdot) G(\cdot, t) \in L_{p}(a, t), \quad \forall t \in J$.
Introduce the following relations: we said that $B \ll D$ is true, if a constant $c>0$ exists which may depend on $p$, and inequality $B<c D$ is valid. The relation $B{ }_{\cap}^{\cup} D$ means that $B \ll D \ll B$.
Theorem 1. Let $1<p<\infty$ and $G$ be the operator of type (2) with non-negative kernel $G(s, x)$, and for it condition (3) is satisfied. Then, inequality (1) is valid if and only if $B<\infty$. Here $A_{\curvearrowleft}^{\cup} C$, where $C$ is the least constant in (1).
Keywords: weighted function, integral operator, fractional derivative, operator of fractional differentiation, Hardy's inequality.

## References:

[1] R. Oynarov, On a three weighted generalized Hardy's inequality, Mat. zametki, vol. 54, issue 2, 1993.
[2] G. Hardy, D. Littlwood, G. Polya, Inequality, IL, Moscow, 1948.

