Periodic problem for first-order equations with deviating argument

Amir Shaldanbaev^a, Assylzat Kopzhassarova^b, Aigul Imanbaeva^c ^{a,b,c}M. Auezov South-Kazakhstan State University, Kazakhstan, ^ashaldanbaev51@mail.ru, ^basyl_k@mail.ru, ^caigul_baratovna@bk.ru

Abstract: In the present work, we study spectral characteristic marginal problem:

 $y'(x) = \lambda y (\alpha - x), y (0) = y (2\pi),$ where $0 \ll \alpha \leq 2\pi, \lambda$ is a spectral parameter. We consider in the space $L^{2}(0,2\pi)$ periodic problem $y'(x) = \lambda y (\alpha - x),$ (1) $y(0) = y (2\pi),$ (2)

where α is real value satisfying condition $0 \ll \alpha < 2\pi$, and λ is a spectral parameter.

Similar problem was considered in earlier work [1]

$$y'(x) = \lambda y(1 - x),$$

$$\alpha y(0) + \beta y(1) = 0$$

where α , β are complex numbers, λ is spectral parameter. In our case, a magnitude α does not coincide with the end of the interval, i.e. $\alpha \neq 2\pi$ and this significantly affects the results. It turns out that the problem (1) - (2) has a complete and orthogonal system of eigenvectors and also another series of eigenvectors, which form an incomplete system in $L^2(0,2\pi)$. When $\alpha = 2\pi$ second series disappear and the results coincide with the results of work [1].

It is known that [2], the self-adjoint and quite continuous operator has a complete and orthogonal system of eigenvectors and it does not have other eigenvectors. Not completely continuous, but self-adjoint operator can have a complete orthogonal system of eigenvectors and real eigenvalues, corresponding to them.

Keywords: eigenvalues, eigenfunctions, boundary conditions, adjoined function.

References:

[1] T.Sh. Kalmenov, A.Sh. Shaldanbaev, S.T. Akhmetov. Spectral theory of equations with deviating arguments. Mathematical Journal, Almaty, part 4, no. 3 (13), pp. 41-48, 2004.

[2] N.I. Akhiezer, I.M. Glazman, Theory of linear operators in Hilbert space, Nauka, Moscow, 1966.

[3] N.Ts. Hochberg, M.G. Krein, Introduction to the theory of linear non-selfadjoint operators in Hilbert space, Nauka, Moscow, 1965.

[4] N.K. Bari, On bases in Hilbert space, DAN, 54, pp. 383-386, 1946.