The positivity of second order difference operator with periodic conditions in Holder spaces

Allaberen Ashyralyev ^{a,b}, Fatih Sabahattin Tetikoglu ^{a,c}
^a Department of Mathematics, Fatih University, Turkey
^b Department of Mathematics, ITTU, Turkmenistan
^a <u>aashyr@fatih.edu.tr</u>, ^c <u>fs_tetik@hotmail.com</u>

Abstract: In this study, the second order of approximation of difference operator A_h^x approximates the second order differential operator A^x defined by the formula

$$A^{x} = -u_{xx}(x) + \delta u(x), \delta > 0$$

with domain

$$D(A^{x}) = \left\{ u(x): u(x), u'(x), u''(x) \in C(R^{1}), u(x) = u(x + 2\pi), x \in R^{1}, \int_{0}^{2\pi} u(x) dx = 0 \right\}$$

is considered. The Green's function of the difference operator A_h^x is constructed. The estimates for the Green's function are obtained. The positivity of operator A_h^x in the Banach space $C(R_{1h})$ of periodic mesh functions defined on R_{1h} is established. Here, $R_{1h} = \{x_k = kh, k = 0, \pm 1, \pm 2 \dots\}$. It is proved that for any $\alpha \in \left(0, \frac{1}{2}\right)$, the norms in spaces $E_\alpha = E_\alpha(C(R_{1h}), A_h^x)$ and $C^{2\alpha}(R_{1h})$ are equivalent. The positivity of the operator A_h^x in the Holder spaces of $C^{2\alpha}(R_{1h})$, $\alpha \in \left(0, \frac{1}{2}\right)$ is proved.

Keywords: positivity of difference operators, fractional space, nonlocal boundary conditions, Green's function.

References:

- [1] A. Ashyralyev, P.E. Sobolevskii, New Difference Schemes for Partial Differential Equations, Operator Theory Advances and Applications, Birkhäuser Verlag, Basel, Boston, Berlin, 2004.
- [2] A. Ashyralyev, N. Altay, A note on the well-posedness of the nonlocal boundary value problem for elliptic difference equations, Applied Mathematics and Computation, vol. 175, pp. 49–60, 2006.
- [3] A. Ashyralyev, F.S. Tetikoglu, The structure of fractional spaces generated by the positive operator with periodic conditions. In: A. Ashyralyev, A. Lukashov (eds.), First International Conference on Analysis and Applied Mathematics (ICAAM 2012), AIP Conference Proceedings, vol. 1470, pp. 57–60, 2012.