Some properties of the Schur complement of a block operator matrix

Tulkin H. Rasulov^a ^aBukhara State University, Uzbekistan ^a<u>rth@mail.ru</u>

Abstract: Let T^d be the *d*-dimensional torus, $L_2(T^d)$ be the Hilbert space of square integrable functions defined on T^d and $L_2^s((T^d)^2)$ be the Hilbert space of square integrable symmetric functions defined on $(T^d)^2$. Denote by *H* the direct sum of Hilbert spaces $H_1 \coloneqq L_2(T^d)$ and $H_2 \coloneqq L_2^s((T^d)^2)$.

In the Hilbert space H, we consider the following block operator matrix

$$A \coloneqq \begin{pmatrix} A_{11} & A_{12} \\ A_{12}^* & A_{22} \end{pmatrix}$$
(1)

with the entries $A_{ij}: H_j \rightarrow H_i, i \le j, i, j = 1, 2$:

$$(A_{11}f_1)(p) = u(p)f_1(p), \ (A_{12}f_2)(p) = \int_{T^d} v(s)f_2(p,s)ds,$$

$$(A_{22}f_2)(p,q) = w(p,q)f_2(p,q), f_i \in H_i, i = 1,2.$$

Here $u(\cdot)$ and $v(\cdot)$ are real-valued continuous functions on T^d , and $w(\cdot, \cdot)$ is a real-valued continuous symmetric function on $(T^d)^2$.

For a 2×2 block operator matrix (1), there exist two Schur complements, the first of them is formally given by:

 $S_1: C \setminus \sigma(A_{22}) \to H_1, \ S_1(\lambda) := A_{11} - \lambda - A_{12}(A_{22} - \lambda)^{-1}A_{12}^*, \ \lambda \in \rho(A_{22}).$

 $S_1(\cdot)$ is an analytic operator function defined outside of the spectrum A_{22} and were first used in the theory of matrices [1]. We recall that in the theory of bounded and unbounded block operator matrices, Schur complements are powerful tools to study the spectrum and various spectral properties [2,3].

In this work, the several spectral properties of the first Schur complement $S_1(\lambda)$ related with the number of eigenvalues are studied. In one dimensional case (d=1) for special class of parameter functions of A the existence of the infinitely many eigenvalues of $S_1(\lambda)$ is established. The eigenvalues, it's multiplicities and the corresponding eigenvectors are founded.

Keywords: block operator matrix, Schur complement, eigenvalues, spectrum. **References:**

[1] I. Schur, Uber potenzreihen, die im innern des einheitskreises beschraekt sint. J. Reine Angew. Math., vol. 147, pp. 205-232, 1917.

[2] R. Nagel, The spectrum of unbounded operator matrices with non-diagonal domain. J. Func. Anal., vol. 89, no. 2, pp. 291-302, 1990.

[3] F.V. Atkinson, H. Langer, R. Menniken, A.A. Shkalikov, The essential spectrum of some matrix operators. Math. Nachr., vol. 167, pp. 5-20, 1994.