On the spectrum of Volterra integral equation with the "incompressible" kernel

Meiramkul M. Amangaliyeva^{a,d}, Muvasharkhan T. Jenaliyev^{a,d}, Minzilya T. Kosmakova^{b,e}, Murat I. Ramazanov^{c,f} ^aInstitute of Mathematics and Mathematical Modeling, Kazakhstan ^bAl-Farabi Kazakh National University, Kazakhstan ^cKaraganda State University of the name of academician E.A. Buketov, Kazakhstan

^{*d}muvasharkhan@gmail.com*, ^{*e}Svetik_mir69@mail.ru*, ^{*f}ramamur@mail.ru*</sub></sup></sup></sup>

Abstract: We consider the singular Volterra integral equation of the second kind which has the "incompressible" kernel

$$\varphi(t) - \lambda \int_{0}^{t} K(t,\tau) \,\varphi(\tau) \,d\tau = f(t), \quad t > 0, \qquad (1)$$

where

$$K(t,\tau) = \frac{1}{2a\sqrt{\pi}} \left\{ \frac{t+\tau}{(t-\tau)^{\frac{3}{2}}} \exp\left(-\frac{(t+\tau)^2}{4a^2(t-\tau)}\right) + \frac{1}{(t-\tau)^{\frac{1}{2}}} \exp\left(-\frac{t-\tau}{4a^2}\right) \right\}.$$

The feature of equation (1) follows from the limit relations for the kernel $K(t, \tau)$

$$\lim_{t\to 0}\int_0^t K(t,\tau)\,d\tau=1,\,\lim_{t\to+\infty}\int_0^t K(t,\tau)\,d\tau=1.$$

We assume that $|\lambda| > 1$. Case $|\lambda| = 1$ was considered in [1] and [2]. After allocating the characteristic part, we present equation as an equation with a difference kernel [3]. Further the initial equation is reduced to the Abel equation. As a result, it is proved the solvability of equation (1) for any function $f(t): \sqrt{t} f(t) \in L(0; \infty) | C(0; \infty)$ and the presence of eigenfunctions which are found in explicit form. The equation has a continuous spectrum, and the multiplicity of the characteristic numbers grows with increasing $|\lambda|$.

Keywords: incompressible kernel, eigenfunction, Abel equation.

References:

[1] D.M. Akhmanova, M.T. Kosmakova, M.I. Ramazanov, A.E. Tuimebayeva, On the solutions of the homogeneous mutually conjugated Volterra integral equations, Bulletin of University of Karaganda, series Mathematics, no. 2(70), pp. 153–158, 2013.

[2] D.M. Akhmanova, M.T. Jenaliyev, M.T. Kosmakova, M.I. Ramazanov, On a singular integral equation of Volterra and its adjoint one, Bulletin of University of Karaganda, series Mathematics, no. 3(71), pp. 3–10, 2013.