Definition of number of the valid roots of the polynom

Skanderbek Joldasbekov ${ }^{a}$, Bakhtugirei Sinchev ${ }^{b}$, Assylbek Jomartov ${ }^{c}$ ${ }^{a, b, c}$ Institute of Mathematics and Mathematical Modelling, Kazakhstan ${ }^{a}$ dgpimmash@mail.ru, ${ }^{\text {s sinchev@ mail.ru, }}{ }^{c}$ legsert@mail.ru

Abstract: At calculation of members of a number of Sturm on the basis of computers loss of the importance of number and exponent disappearance are possible. It leads to loss of signs in a number of Sturm that attracts to the wrong definition of number of the valid roots of a polynom.
Problem: to find number of the valid roots of a polynom with the real coefficients.

$$
\begin{equation*}
f(p)=a_{0} p^{n}+a_{1} p^{n-1}+\ldots+a_{n-1} p+a_{n} \tag{1}
\end{equation*}
$$

Use the following ranges of change of a variable in system (1) $-\infty \leq p \leq \infty$, $-\infty \leq p \leq 0, \quad 0 \leq p \leq \infty \quad$ and $V(p)$ - number of changes of signs in Sturm system interest. More effective and less labor-consuming method of creation of system of Sturm is offered. We will put $f_{1}(p)=f^{\prime}(p)$. Then divide $f(p)$ on $f^{\prime}(p)$ and the rest from this division, taken with the return sign, we accept for $f_{2}(p)$:

$$
\begin{equation*}
f_{k-2}(p)=f_{k-1}(p) g_{k-1}(p)-f_{k}(p), \tag{2}
\end{equation*}
$$

then from the rest we take a derivative

$$
\begin{equation*}
f_{k+1}(p)=-f_{k}^{\prime}(p) \tag{3}
\end{equation*}
$$

where $f_{0}(p)=f(p), f_{1}(p)=f^{\prime}(p)$.
Steps (2), (3) we repeat for finding of polynoms $f_{k-1}, f_{k}, k=2,3, \ldots$ and so on until we will receive. In an existing method [1] operation (2) repeats until then yet we won't receive a constant $f_{m}(p)=$ const. In an existing method [1] operation (2) repeats until then yet we won't receive a constant. The system of polynoms constructed by us meets all requirements of the theorem of Sturm

$$
\begin{equation*}
f(p)=f_{0}(p), f^{\prime}(p)=f_{1}(p), f_{2}(p), \ldots, f_{m}(p) \tag{4}
\end{equation*}
$$

Lemma. Differences $V(-\infty)-V(\infty), V(-\infty)-V(0), V(0)-V(\infty)$ are equal to number of the valid, negative and positive roots of a polynom (1) respectively. Less laborconsuming new system (4) by definition of number of the valid roots of a polynom has smaller number of changes of signs, than in an existing method of Sturm.
Keywords: polynom, number of Sturm, roots, theorem of Sturm.
References:
[1] A.G. Kurosh, Kurs of the higher algebra, Moscow, Nauka, 1975.

