Duality theorems for the noncommutative spaces

Kanat Tulenov^a ^aAl-Farabi Kazakh National University, Kazakhstan ^akanat.tulenov@gmail.com

Abstract: In this work, we introduce the noncommutative $H_p(A, l_{\infty})$ and $H_p(A, l_1)$ spaces, and give results on duality.

Let *M* be a finite von Neumann algebra equipped with a normal faithful tracial state τ . Let *D* be a von Neumann subalgebra of *M*, and let $\phi: M \to D$ be the unique normal faithful conditional expectation such that finite subdiagonal algebra of *M* with respect to ϕ is a w^{*} -closed subalgebra *A* of *M* satisfying the following conditions:

(i) $A + A^*$ is w *-dense in M;

(ii) ϕ is multiplicative on *A*;

(iii) $A \cap A^* = D$,

where A^* is the family of all adjoint elements of the element of A. The algebra D is called the diagonal of A (see [1],[3]). We define $H_p(A, l_{\infty})$ and $H_p(A, l_1)$ spaces by a similar way as in [3].

Theorem. Let $1 \le p < \infty$ such that 1/p + 1/p = 1. Then

(i) $H_p(A;l_1)^* = L_p(M;l_{\infty})/H_p^0(A;l_{\infty})^*$ and $(L_p(M;l_1)/H_p^0(A;l_1))^* = H_p(A;l_{\infty})$

isometrically via the following duality bracket

$$((x_n),(y_n)) = \sum_{n=1}^{\infty} \tau(y_n^* x_n)$$

for $x \in H_p(A; l_1)$ and $y \in H_p(A; l_\infty)$.

Keywords: von Neumann algebra, subdiagonal algebras, vector valued noncommutative Hardy spaces, duality theorems.

References:

[1] W.B. Arveson, Analiticity in operator algebras, Amer. J. Math. 89, pp. 578-642, 1967.

[2] M. Junge, Doobs inequality for non-commutative martingales, J. Reine Angew. Math., 549, pp. 149-190, 2002.

[3] M. Junge and Q. Xu, Noncommutative maximal ergodic theorems, J. Amer. Math. Soc. 20, pp. 385-439, 2007.